Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible

نویسندگان

  • Bablu Mukherjee
  • Frank Tseng
  • Daniel Gunlycke
  • Kiran Kumar Amara
  • Goki Eda
  • Ergun Simsek
چکیده

Temperature and Fermi energy dependent exciton eigenenergies of monolayer molybdenum disulfide (MoS2) are calculated using an atomistic model. These exciton eigen-energies are used as the resonance frequencies of a hybrid Lorentz-Drude-Gaussian model, in which oscillation strengths and damping coefficients are obtained from the experimental results for the differential transmission and reflection spectra of monolayer MoS2 coated quartz and silicon substrates, respectively. Numerical results compared to experimental results found in the literature reveal that the developed permittivity model can successfully represent the monolayer MoS2 under different biasing conditions at different temperatures for the design and simulation of MoS2 based opto-electronic devices. © 2015 Optical Society of America OCIS codes: (260.2110) Electromagnetic optics; (160.4760) Optical properties; (240.0310) Thin films. References and links 1. R. F. Frindt and A. D. Yoffe, “Physical Properties of Layer Structures: Optical Properties and Photoconductivity of Thin Crystals of Molybdenum Disulphide,” Proc. R. Soc. Lond. A 273, 135269 (1963). 2. G. Eda, H. Yamaguchi, D. Voiry,T. Fujita, M. Chen, and M. Chhowallam, “Photoluminescence from Chemically Exfoliated MoS2,” Nano Lett. 11, 5111 (2011). 3. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schuller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011). 4. S.-L. Li, H. Miyazaki,H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman Spectrum and Reliable Thickness Identification for Atomic Layers on Insulating Substrates,” ACS Nano 6, 7381 (2012). 5. C.-C. Shen, Y.-T. Hsu, L.-J. Li, and H.-L. Liu, “Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition,” Appl. Phys. Express 6, 125801 (2013). 6. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nature Mat. 12, 207 (2013). 7. A.K.M. Newaz, D. Prasai, J.I. Ziegler, D. Caudel, S. Robinson, R.F. Haglund Jr., K.I. Bolotin, “Electrical control of optical properties of monolayer MoS2,” Solid State Commun. 155, 49 (2013). 8. J. -T. Liu, T.-B. Wang, X.-J. Li, and N.-H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” http://arxiv.org/abs/1403.0894. 9. W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al Mahboob, A. M. van der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman, “Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy,” Phys. Rev. Lett. 111, 106801 (2013). 10. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nature Comm. 4, 1474 (2014). #230586 $15.00 USD Received 12 Dec 2014; revised 12 Jan 2015; accepted 15 Jan 2015; published 27 Jan 2015 (C) 2015 OSA 1 Feb 2015 | Vol. 5, No. 2 | DOI:10.1364/OME.5.000447 | OPTICAL MATERIALS EXPRESS 447 11. Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, “Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating,” Nano Research, 7, 973–980 (2014). 12. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104, 103114 (2014). 13. H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. H. Castro Neto, J. Martin, S. Adam, B. Ozyilmaz, and G. Eda, “Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition,” Nano Letters 14 (4), 1909 (2014). 14. E. S. Kadantsev, P. Hawrylak, “Electronic Structure of a Single MoS2 Monolayer,” Solid State Commun. 152, 909 (2012). 15. T. Cheiwchanchamnangij, W. R. Lambrecht, “Quasiparticle Band Structure Calculation of Monolayer, Bilayer, and Bulk MoS2,” Phys. Rev. B 85, 205302 (2012). 16. A. Ramasubramaniam, “Large Excitonic Effects in Monolayers of Molybdenum and Tungsten Dichalcogenides,” Phys. Rev. B 86, 115409 (2012). 17. T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, “Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides,” Phys. Rev. B 88, 045318 (2013). 18. D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States”, Phys. Rev. Lett. 111, 216805 (2013). 19. F. Huser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2,” Phys. Rev. B 88, 245309 (2013). 20. E. J. G. Santos and E. Kaxiras, “Electrically Driven Tuning of the Dielectric Constant in MoS2 Layers,” ACS Nano 7, 10741 (2013). 21. F. Tseng, E. Simsek, and D. Gunlycke, “Triangular Lattice Exciton Model,” in preparation to be submitted, Jan. 2014. 22. S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, Serge, and K. Kalantar-zadeh, “Atomically thin layers of MoS2 via a two step thermal evaporation?exfoliation method,” Nanoscale 2 461 (2012). 23. Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S. F. Yu, L.-J. Li, and H. Y. Yang, “Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals,” Sci. Rep. 3, 1839 (2013). 24. J. R. Wait, “Transmission and reflection of electromagnetic waves in the presence of stratified media,” J. Research NBS 61 (3), 205 (1958). 25. E.D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimensional Semiconductors.

We investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogeneous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient nonradiative Förster resonant energy transfer (FRET) from QDs ...

متن کامل

High-performance MoS2 transistors with low-resistance molybdenum contacts

Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array

A broadband metamaterial absorber (MA) composed of hexagonal-arranged single-sized titanium nitride (TiN) nano-disk array and monolayer molybdenum disulfide (MoS2) is studied using finite-difference time-domain (FDTD) simulations. The structure of TiN nano-disk array/dielectric silica (SiO2)/aluminum (Al) is adopted in our design. By optimizing the dimension parameters of the structure, an aver...

متن کامل

Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers

We numerically study the possibility of using atomically thin transition metal dichalcogenides (TMDs) for applications requiring broadband absorption in the visible range of the electromagnetic spectrum. We demonstrate that when monolayer TMDs are positioned into a finite-period of multilayer Bragg stack geometry, they make broadband, wide-angle, almost polarization-independent absorbers. In ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015